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1 INTRODUCTION

As the autonomous vehicle (AV) technology attracts more interests in both industry and academia,
it brings a vast set of new solutions and questions alike. One of the issues is the management of
such an automated fleet, especially in the presence of traditional human-driven vehicles (HVs).
The AV management problem includes many areas worth exploring, ranging from motion con-
trol to network design, detection technology to economic evaluation. In this paper, we study the
modeling and control of AVs in ride-sourcing systems.

The modeling and control problem is complicated, involving stochastic behaviors of existing
market users. The labor supply may exhibit different behaviors based on wage changes, adhering
the income-targeting theory (Camerer et al., 1997) or the neoclassical theory (Farber, 2015).
Besides the labor supply, passengers also demonstrate varying behaviors. Wang et al. (2020)
studies the order cancellation and its impact on a ride-sourcing system. Hörl et al. (2019) has
designed operational plans for AV fleets based on such behavioral assumptions. These works
mostly focus on pre-defined vehicle routing and order dispatching policies, rather than dynamic
controls in real time. It is shown that a non-equilibrium dynamic pricing control scheme can
bring significant benefits to the ride-sourcing operator (Nourinejad & Ramezani, 2020).

This work focuses on the fleet size and price structure for ride-sourcing services by a mixed
fleet composition. A network simulation is developed to replicate individual behaviors and inter-
actions in a ride-sourcing market, considering various personal traits and preferences. A dynamic
control method utilizing a model predictive control (MPC) scheme is proposed to optimize the
dynamic trip fares, driver wages, and AV fleet activation/deactivation in real time.

2 METHODOLOGY

2.1 Detailed Simulation Plant

A simulation environment is constructed to implement and test the proposed control method.
The simulation provides flexibility in regard to behaviors of individual agents, i.e. passengers,
drivers, and AVs. A static network map is also configured to replicate their path-finding and
matching processes in an urban ride-sourcing environment.
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2.1.1 Agent Behavior

The model involves two groups of agents, passengers and vehicles. Each individual passenger
generates a trip request from some origin location to some destination at some time. These
trip demands are obtained from NYC yellow taxi records in June 2016. Besides trip generation,
personal attributes such as their value of time (VoT) and maximum waiting time (patience)
would affect their mode choice and order cancellation behaviors.

It is assumed that a passenger chooses a vehicle type (HV or AV) before the trip request.
Such process is modeled as a Logit choice such that the utility depends on (1) the current trip
fare, (2) individual VoT, and (3) the estimated waiting time to be matched with a vacant vehicle.
In the case of undesirable utilities, passengers also have the option to select other modes, which
have a fixed utility. Even if a passenger has requested for an AV or HV, the actual matching
process might take too long so that they decide to cancel the request. A passenger is assumed
to have some patience time (e.g., 1 minute, bounded by 0.5 and 2 minutes).

Both AVs and HVs provide the same trip services. They remain stationary until the platform
(central system) assigns them with some passengers. They would pick up the passenger at the
origin location by the shortest travel time path and deliver them to the destination in the same
manner. The main difference is how the AV fleet can be directly managed by real-time acti-
vation/deactivation while human drivers are only partially influenced by monetary incentives.
Since drivers have different inherent preferences about working hours and incomes, their partic-
ipation and exit from the labor market are more complicated. It is challenging to predict their
individual impacts on the aggregated market condition. Both income-targeting and neoclassical
driver behaviors are considered in this paper. HVs drivers make relevant decisions based on
either cumulative gain or the short-term income prospect.

2.1.2 Network and Matching

The road network of Manhattan is obtained from OpenStreetMap to build a directed graph with
roads as edges and intersections as nodes. The resultant graph contains 9537 edges and 4360
nodes. Each edge is associated with a static travel time (i.e. constant speed), which is calibrated
from historical taxi trip records. The static map is used to facilitate path-finding and trip
assignment. A batch matching algorithm is used to pair waiting passengers and vacant vehicles.
It operates at short intervals (e.g., 10 seconds) to pair the passenger requests queued during this
interval with available vehicles such that the total pick-up travel time is minimized. Matching is
conducted separately for AVs and HVs, as passengers cannot request both simultaneously.

2.2 Model Predictive Control

A model predictive control (MPC) scheme is applied in a closed-loop framework to maximize
the platform’s profit. The MPC relies on a prediction model to estimate future system states
within a finite prediction horizon so that the control variables can be optimized with respect to
future states. The optimization process is repeated with a shifted (receding) horizon to update
the control inputs to be implemented in the simulation plant. In addition, the system model
considers periodic state feedback from the plant to improve the state prediction. The overall
system framework is illustrated in Figure 1. The set of 4 control inputs at a certain step k within
the horizon, ū(k), are (1) trip fare per unit in-vehicle travel time for AVs, fAV(k); (2) trip fare
per unit in-vehicle travel time for HVs, fHV(k); (3) wage per unit in-vehicle travel time for HVs,
gHV(k); and (4) AV fleet activation/deactivation, ∆NAV(k).

By manipulating these control inputs, the platform aims to maximize its total profit for each
receding horizon from k0 to k0 + h. The profit depends on (a) total revenues collected from
AV and HV fares for each successful ride; (b) wage payments to HVs (i.e. HV cost); (c) fixed
operational expenses of vacant and occupied AVs (i.e. AV cost); and (d) penalties from passenger
order cancellations which affect long-term reputation of the platform.
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Figure 1 – method framework. Historical supply and demand data are used as exogenous demand
and supply estimations in the prediction model. The closed-loop framework involves state feedback
from the plant, prediction of future states, optimization and implementation of control inputs.

Equations 1–4 outline market state dynamics for the two vehicle types m ∈ {AV,HV}. The
first two define the number of waiting passengers pmw , and vacant vehicles nm

v of vehicle type m
from time step k to k + 1. The estimation requires exogenous demand ∆Nm

p (including mode
choice) and supply ∆Nm inputs, as well as endogenous algorithmic estimations for the number of
order cancellations ñm

cancel, number of expected drop-offs (trip completion) ñm
drop, and the number

of new trip matching which is equal to the minimum of the two agent sets (pmw and nm
v ) in a

complete bipartite graph. Likewise, the number of assigned vehicles nm
a would decrease by the

number of pick-ups ñm
pick, once they reach the passenger location and become occupied.

pmw (k + 1) = pmw (k) + ∆Nm
p (k)− ñm

cancel(k)−min{pmw (k), nm
v (k)} (1)

nm
v (k + 1) = nm

v (k) + ∆Nm(k) + ñm
drop(k)−min{pmw (k), nm

v (k)} (2)

nm
a (k + 1) = nm

a (k)− ñm
pick(k) + min{pmw (k), nm

v (k)} (3)

nm
o (k + 1) = nm

o (k) + ñm
pick(k)− ñm

drop(k) (4)

The controllers manage the system via the exogenous demand and supply. Trip fares would
determine the passenger demand and the mode split ratio; AV fleet size is a direct control
variable; and dynamic driver wages are indirect incentives to manage the HV supply.

3 RESULTS

The preliminary results suggest that MPC has the potential to significantly improve the profit.
The test case simulates the morning passenger demand based on historical taxi trip records
from 04:00 to 10:00 with 1000 AVs and HVs respectively. The benchmark control variables are
assumed to be time-invariant. Figure 2 shows an example of state prediction for the benchmark
case. Plant feedback adjusts the initial guesses for each prediction. Table 1 summarizes results
for a scenario where only passenger fares are controlled. Thus, the solution for a supply surplus
is to increase both fares to gain more profits, which also drive out passengers, those above the
platform’s capacity, to lower the expected order cancellation. The AV fare is raised to an average
of $1.52/min (from $0.8/min) and HV fare is raised to $1.67/min (from $0.7/min).
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Figure 2 – example state predictions. An overestimation of assigned vehicles would correspond
with an underestimation of occupied vehicles due to longer/shorter pick-up time expectations.

Table 1 – Summary of Preliminary Results

Benchmark (fixed controls) MPC (Fare control)
Total demand (AV/HV/others) 24456 / 21029 / 18736 17167 / 19178 / 27876
Cancellation (AV/HV) 6653 / 3299 1880 / 1229
Total fare revenue $336,764 $525,581
Total wage payment $153,357 $110,210
Total AV cost $131,805 $119,619
Total profit $51,603 $295,752

4 DISCUSSION

This paper proposes a model with dynamic optimization controls. Multiple levels of individual
decision-making processes make the models more realistic. The advantage of an MPC is that it
does not rely on accurate long-term predictions as much because it receives periodic feedback
corrections from the system. This allows the platform to optimize its goals at a macroscopic
level, and manage a mixed fleet by considering different options while predicting/monitoring
their impacts on the market states of interest.
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