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1 INTRODUCTION

Several transportation systems leverage connected technologies and digitization to coordinate
vehicles’ and customers’ operations. In the most prominent example, new ride-sharing services
enable riders can walk to meet drivers in mutually convenient locations in exchange of a discount
(e.g., Uber Express Pool, Lyft Shared Saver). Similarly, company and school buses pick up riders
in a few central locations prior to traveling to a common destination. Another example is aerial
refueling, in which a tanker aircraft coordinates its operations with other aircraft.

In all these examples, vehicle-customer coordination provides an extra degree of freedom to en-
hance the efficiency of first- and last-mile transportation. This flexibility, however, comes with
challenges. At the downstream level, the immediate question is how to optimize the timing and
location of each stop, based on vehicle operations and customer locations. At the upstream level,
service providers need to comprehensively re-optimize routing operations to take full advantage
of vehicle-customer coordination—which customers to serve, with which vehicles, and in which
sequence. In turn, vehicle-customer coordination requires dedicated algorithms. The only at-
tempt to date to solve a vehicle routing problem with vehicle-customer coordination comes from
Gambella et al. (2018), who formulated the problem in the Euclidean space as a mixed-integer
second-order cone program and developed a branch-and price algorithm. Yet, their algorithm
falls short of the large-scale instances arising in many practical applications.

2 OPTIMIZATION METHODOLOGY

In response, the first goal of this paper is to develop scalable algorithms to support routing
optimization with vehicle-customer coordination. We tackle a Dial-A-Ride problem with Vehicle-
Customer Coordination (DAR–VCC), in which customers request transportation from an origin
to a destination by a deadline, and an operator optimizes vehicle-customer assignments, the
sequence of pickups and dropoffs, as well as the location and time of each stop. We formulate
it as a mixed-integer second-order cone program (MISOCP) in the Euclidean `2 space and as a
mixed-integer linear program (MILP) in the Manhattan `1 space. Either way, off-the-shelf imple-
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mentation can only solve small-scale instances. Instead, we develop a decomposition algorithm
that breaks down the problem into three steps:

1. Single Stop Optimization with Vehicle-Customer Coordination (SSO– VCC). We derive geo-
metric insights on the optimal stopping location (between two fixed locations) as a function of
the vehicle’s speed, the customer’s speed and the customer’s maximum walking distance. This
reduces SSO–VCC from a three-dimensional problem (one temporal dimension and two spatial
dimensions) to one-dimensional problems in the `2 space (the direction of walking, as illustrated
in Figure 1a), or a closed-form system of linear equations in the `1 space (Figure 1b). Either
way, SSO–VCC can be solved very efficiently.

(a) Euclidean space. (b) Manhattan space.

Figure 1 – Geometric representation of SSO–VCC (O: vehicle origin; D; vehicle destination; H: customer
home; M : optimized stopping location).

2. Multiple Stop Optimization with Vehicle-Customer Coordination (MSO– VCC). This problem
involves optimizing the locations and times of multiple stops in a given sequence. We propose a
tailored coordinate descent scheme that optimizes one stop at a time, thus decomposing MSO–
VCC into a sequence of SSO–VCC problems. We prove that, in the `1 space and the `2 space,
this algorithm terminates at a globally optimal solution of the MSO–VCC—a constrained and
non-separable optimization problem (Theorem 1). This algorithm provides our core optimization
engine, which solves the MSO–VCC much faster than off-the-shelf implementation.

Theorem 1 In a metric space armed with a differentiable norm (e.g., the `2-norm) or the `1-
norm, MSO–VCC can be solved to optimality by solving SSO–VCC problems iteratively.

3. Dial-A-Ride with Vehicle-Customer Coordination (DAR– VCC). We propose a new time-space
network representation for dial-a-ride problems where “empty vehicles” flow from node to node
and arcs represent customer-serving trips. This structure captures vehicle capacities and time
windows into the network itself. We develop an algorithm combining dynamic programming
to generate candidate trips (which embeds MSO–VCC to optimize the time and location of
each stop) and a time-space network optimization to select trips (see Figure 2). This algorithm
provides a new dial-a-ride methodology combining set partitioning and time-space formulations.

Legend: pickup dropoff

O D

Trip 1 Trip 2 Trip 3 Trip 4

Figure 2 – A vehicle path combines several customer-serving trips via time-space network optimization.
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Computational results show that this algorithm significantly outperform state-of-the-art MIS-
OCP and MILP benchmarks, both in terms of solution quality and computational times (Table 1).
Indeed, MISOCP or MILP implementation can only solve instances with up to 6–8 customers,
returns a very loose optimality gap with 10–50 customers, and does not even find a feasible solu-
tion with more than 25–50 customers. We also propose a CPLEX-based heuristic that achieves
better scalability and consistently returns feasible solutions—albeit, rarely terminating in 1 hour.
In comparison, our algorithm can handle medium-scale instances with up to 50 customers in sec-
onds and large-scale instances with up to 200 customers in minutes. To show the robustness
of these results, we also solve the Vehicle Routing Problem with Vehicle-Customer Coordination
(VRP–VCC) from Gambella et al. (2018) by embedding MSO–VCC into a dynamic programming
algorithm. Our approach provides Pareto improvements as compared to the branch-and-price
benchmark: higher-quality solutions in shorter runtimes.

Table 1 – Average computational results for DAR–VCC (3 vehicles, Euclidean distance).

CPLEX CPLEX-based heuristic Our algorithm

Norm # cus. Sol. UB Opt. gap Gap vs. alg. CPU (s) Sol. Gap vs. alg. CPU (s) Sol. CPU (s)

`2 5 18.3 18.3 0% 0% 66 18.3 0% 110 18.3 <1
10 4.5 33.5 652% 439% >3,600 15.2 58% >3,600 24.0 <1
15 6.4 56.3 787% 568% >3,600 18.6 128% >3,600 42.4 <1
20 7.0 72.2 937% 493% >3,600 18.3 126% >3,600 41.3 <1
25 4.6 94.4 1,936% 901% >3,600 20.2 130% >3,600 46.4 <1
50 - - - - - 17.9 253% >3,600 63.2 340
100 - - - - - 15.8 266% >3,600 57.8 180
200 - - - - - 15.1 317% >3,600 63.1 2,843

`1 5 21.9 21.9 0% 0% 1 21.9 0% 3 21.9 <1
10 29.5 40.2 36% 1% >3,600 26.8 11% 3,100 29.8 <1
15 38.1 65.7 73% 17% >3,600 33.8 31% >3,600 44.4 <1
20 30.7 90.1 193% 48% >3,600 30.2 50% >3,600 45.4 <1
25 20.6 112.3 445% 160% >3,600 35.4 51% >3,600 53.5 <1
50 7.0 212.1 2,946% 919% >3,600 29.0 145% >3,600 71.0 96
100 - - - - - 33.2 98% >3,600 65.9 90
200 - - - - - 30.7 138% >3,600 72.9 1,939

3 ONLINE IMPLEMENTATION

Our second goal is to support real-world operations with vehicle-customer coordination, with a
focus on ride-sharing services where the platform can request customers to walk to the pickup
location or from the dropoff location. We define an Online Dial-A-Ride with Vehicle-Customer
Coordination (O–DAR– VCC). Consistent with practice and the literature, we assume that
operations proceed via batching and optimization, that is, customer requests are aggregated
and matched to vehicles every few seconds (Yan et al., 2020, Bertsimas et al., 2019, Ashlagi
et al., 2019). At each epoch, our algorithm optimizes service to “new” customers, service to
“backlogged” customers, and vehicle repositioning. It also captures vehicles’ and customers’
operations in complex road networks featuring one-way streets, traffic congestion, and a handful
of possible stopping locations (as opposed to continuous operations in the `1 or `2 space). Using
real-world data from New York City, we show that our algorithm consistently terminates in
seconds, thus enabling its real-time implementation in very large-scale networks of operations.

From a practical standpoint, our results suggest that vehicle-customer coordination can provide
significant improvements in routing operations, with an average profit increase of 3–4%. For a
system of the size of Manhattan, this represents an estimated gain of $55,000 daily, or $20M
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annually. Moreover, the profit increase stems from two sources: (i) cost savings at the “down-
stream” level, by meeting customers in more convenient locations, and (ii) profit improvements
at the “upstream” level, by serving more customers or higher-margin customers. In fact, the
second source has a much larger contribution to the profit increase than the first one (85–95%
vs. 5–15%). These results suggest that the main benefits of vehicle-customer coordination do not
stem from downstream adjustments in vehicle routes; rather, most of the gains stem from com-
prehensively re-optimizing “upstream” operations: which customers to serve, in which sequence
and with which vehicles. We also consider several discount schemes through which the operator
can share the benefits of vehicle-customer coordination with customers—as is the case in prac-
tice. By sharing the benefits equally between the operator and customers, we obtain a solution
such that (i) the operator’s profit increases by 1.7%, (ii) 4.6% extra customers receive a service,
(iii) 13% of customers are requested to walk to the pickup location and 3% from the dropoff
location (96.5 meters on average) and offered a 4.6% discount, and (iv) vehicle miles traveled are
reduced by 11.0%. This solution represents a win-win-win outcome: higher operating profits,
better customer level of service, and smaller environmental footprint.

Table 2 – Average performance (14 days between 12/1/2019 and 12/14/2019; 90-minute window between
5:00 PM and 6:30 PM; around 16,000 customer requests per day; 2,000 vehicles).

No ride-sharing Ride-sharing

Metric No VCC VCC:PU No VCC VCC:PU VCC:DO VCC:PU–DO

Profit $133,997 $139,041 $139,780 $143,967 $140,507 $144,583
Profit increase (base) 3.8% (base) 3.0% 0.5% 3.4%
Downstream contribution (base) 12.4% (base) 15.5% 9.6% 14.8%
Upstream contribution (base) 87.6% (base) 84.5% 90.4% 85.2%
Revenue $139,635 $144,302 $144,494 $148,196 $145,181 $148,767
Revenue increase (base) 3.3% (base) 2.6% 0.5% 3.0%
Cost $5,639 $5,261 $4,714 $4,229 $4,674 $4,184
Cost per request $0.48 $0.43 $0.39 $0.33 $0.38 $0.33
Cost decrease (base) 6.7% (base) 10.3% 0.8% 11.2%
Acceptance rate 71% 75% 75% 78% 75% 78%
Pickups away from origins — 10% — 13% — 13%
Dropoffs away from destinations — — — — 3% 3%
Vehicle miles traveled (total) 46,367 43,503 38,995 35,031 38,677 34,683
Vehicle miles traveled (per request) 4.01 3.58 3.21 2.77 3.16 2.73
Max discount (uniform) (base) 3.5% (base) 2.8% 0.5% 3.2%
Max discount (targeted) (base) 18.7% (base) 9.6% 8.4% 9.2%
Max discount (prorated, per 100m) (base) $2.8 (base) $1.4 $1.2 $1.2

“VCC:PU”, “VCC:DO”, “VCC:PU–DO”: vehicle-customer coordination for pickups, dropoffs and both.
“Downstream contribution”: share of the profit increase from downstream cost savings.
“Upstream contribution”: share of the profit increase from upstream change in customer mix.
Max. discount: largest discounts for the operator to break even, under various schemes.

References
Ashlagi, Itai, Burq, Maximilien, Dutta, Chinmoy, Jaillet, Patrick, Saberi, Amin, & Sholley, Chris. 2019.

Edge weighted online windowed matching. Pages 729–742 of: Proceedings of the 2019 ACM Conference
on Economics and Computation.

Bertsimas, Dimitris, Jaillet, Patrick, & Martin, Sébastien. 2019. Online vehicle routing: The edge of
optimization in large-scale applications. Operations Research, 67(1), 143–162.

Gambella, Claudio, Naoum-Sawaya, Joe, & Ghaddar, Bissan. 2018. The Vehicle Routing Problem with
Floating Targets: Formulation and Solution Approaches. INFORMS Journal on Computing, 30(3),
554–569.

Yan, Chiwei, Zhu, Helin, Korolko, Nikita, & Woodard, Dawn. 2020. Dynamic pricing and matching in
ride-hailing platforms. Naval Research Logistics, 67(8), 705–724.

TRISTAN XI Symposium Routing Optimization with Vehicle-Customer Coordination


	INTRODUCTION
	OPTIMIZATION METHODOLOGY
	ONLINE IMPLEMENTATION

